Contractors and connectors of graph algebras
نویسندگان
چکیده
We study generalizations of the “contraction-deletion” relation of the Tutte polynomial, and other similar simple operations, to other graph parameters. The question can be set in the framework of graph algebras introduced by Freedman, Lovász and Schrijver in [2], and it relates to their behavior under basic graph operations like contraction and subdivision. Graph algebras were introduced in [2] to study and characterize homomorphism functions. We prove that for homomorphism functions, these graph algebras have special elements called “contractors” and “connectors”. This gives a new characterization of homomorphism functions.
منابع مشابه
0 M ay 2 00 5 Contractors and connectors of graph algebras ∗ László
We study generalizations of the " contraction-deletion " relation of the Tutte polynomial, and other similar simple operations, to other graph parameters. The question can be set in the framework of graph algebras introduced by Freedman, Lovász and Schrijver in [2], and it relates to their behavior under basic graph operations like contraction and subdivision. Graph algebras were introduced in ...
متن کاملContractors for flows
We answer a question raised by Lovász and B. Szegedy [Contractors and connectors in graph algebras, J. Graph Theory 60:1 (2009)] asking for a contractor for the graph parameter counting the number of B-flows of a graph, where B is a subset of a finite Abelian group closed under inverses. We prove our main result using the duality between flows and tensions and finite Fourier analysis.
متن کاملNILPOTENT GRAPHS OF MATRIX ALGEBRAS
Let $R$ be a ring with unity. The undirected nilpotent graph of $R$, denoted by $Gamma_N(R)$, is a graph with vertex set ~$Z_N(R)^* = {0neq x in R | xy in N(R) for some y in R^*}$, and two distinct vertices $x$ and $y$ are adjacent if and only if $xy in N(R)$, or equivalently, $yx in N(R)$, where $N(R)$ denoted the nilpotent elements of $R$. Recently, it has been proved that if $R$ is a left A...
متن کاملPrimitive Ideal Space of Ultragraph $C^*$-algebras
In this paper, we describe the primitive ideal space of the $C^*$-algebra $C^*(mathcal G)$ associated to the ultragraph $mathcal{G}$. We investigate the structure of the closed ideals of the quotient ultragraph $ C^* $-algebra $C^*left(mathcal G/(H,S)right)$ which contain no nonzero set projections and then we characterize all non gauge-invariant primitive ideals. Our results generalize the ...
متن کاملExtended Connectors: Structuring Glue Operators in BIP
Based on a variation of the BIP operational semantics using the offer predicate introduced in our previous work, we extend the algebras used to model glue operators in BIP to encompass priorities. This extension uses the Algebra of Causal Interaction Trees, T (P), as a pivot: existing transformations automatically provide the extensions for the Algebra of Connectors. We then extend the axiomati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Graph Theory
دوره 60 شماره
صفحات -
تاریخ انتشار 2009